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ABSTRACT 
The remote sensing image change detection task is an 
essential method for large-scale monitoring. We propose 
HSANet, a network that uses hierarchical convolution to 
extract multi-scale features. It incorporates hybrid self-
attention and cross-attention mechanisms to learn and fuse 
global and cross-scale information. This enables HSANet to 
capture global context at different scales and integrate cross-
scale features, refining edge details and improving detection 
performance. We will also open-source our model code: 
https://github.com/ChengxiHAN/HSANet. 

Index Terms— Change detection (CD), self-attention 
mechanism, cross-attention mechanisms. 

1. INTRODUCTION 
Change Detection (CD) is the process of identifying 

differences in the state of an object or phenomenon by 
observing it at different times [1]. CD plays a crucial role in 
remote sensing interpretation, with applications spanning 
land use and land cover analysis [2], disaster assessment [4], 
environmental monitoring [5], and urban expansion studies 
[6]. 

Deep learning techniques have significantly advanced 
change detection in remote sensing. Models such as FC-EF 
[7], FC-Siam-conc [7], and FC-Siam-diff [7] utilize stacked 
convolutional layers to extract robust, discriminative features, 
surpassing traditional methods. However, these models often 
exhibit issues such as detection holes and errors. To address 
these challenges, researchers have incorporated dilated 
convolutions and attention mechanisms to expand the 
receptive field and capture global information. Notable 
models employing these techniques include HCGMNet [8], 
STANet [9], CGNet [10], SNUNet [11], C2FNet [12], 
MSPSNet [13], and HANet [14]. Despite these advancements, 
these models still face challenges in capturing subtle details 
and addressing neglected areas. 

 
In the realm of remote sensing (RS), including change 

detection (CD), transformers have become increasingly 
popular. Models such as BIT [15], Change Former [16], and 
RSP-BIT [17] have been introduced to achieve a more 
effective receptive field and deliver competitive performance. 
The recently introduced ChangeMamba [18], a Mamba-based 
method, is also noteworthy. Nonetheless, the majority of 

transformer-based models demand substantial computational 
resources and exhibit slower training speeds, which can 
hinder their practical application and impede further 
exploration by researchers. 

To address these challenges, we introduce HSANet, a 
network that employs hierarchical convolution to extract 
multi-scale features. By integrating hybrid self-attention and 
cross-attention mechanisms, HSANet learns and fuses global 
and cross-scale information. This approach enables HSANet 
to capture global context at various scales and effectively 
integrate cross-scale features. 

2. METHODOLOGY 
2.1. HSANet 

As shown in Fig. 1, we propose a novel network 
architecture, HSANet, specifically designed for change 
detection in high-resolution remote sensing imagery. The 
network introduces significant innovations. The architecture 
is built around multi-scale feature extraction, spatio-temporal 
information interaction, and feature optimization, which 
collectively improve the accuracy and robustness of change 
detection. 

Firstly, HSANet uses the hierarchical convolution 
structure to extract the features of the input multi-temporal 
remote sensing images (T1 and T2). By extracting multi-scale 
features layer by layer, the model can effectively capture 
spatial information from local to global, which lays a solid 
foundation for subsequent spatio-temporal fusion. Different 
from traditional single-scale methods, HSANet has higher 
expressive power in multi-scale modeling. 

Secondly, the network employs a hybrid attention 
mechanism, including self-attention and cross-attention. The 
self-attention module focuses on extracting global context 
information within a single temporal image and capturing the 
correlations between different regions in the image. The 
cross-attention module focuses on temporal change features 
and learns the spatio-temporal interaction information 
between different temporal images. These two attention 
mechanisms are integrated by the Fusion Module, which 
enables the efficient fusion of spatio-temporal information 
and significantly improves the model's ability to understand 
complex change patterns. 

In addition, HSANet further optimizes feature 
representation by introducing the HSC-AFM (Hierarchical 



Scale-aware Feature Module). The HSC-AFM module can 
sense the differences between multi-scale features, 
strengthening key features while suppressing redundant 
information. This mechanism not only effectively enhances 
the feature representation of the change region but also 
preserves target edge details, greatly improving the accuracy 
of change detection. 

Through these innovative designs, HSANet can 
comprehensively capture multi-scale and spatio-temporal 
change features, demonstrating excellent change detection 
ability in complex scenes. Especially in weak change and 
small target detection, the network shows greater robustness, 
providing an efficient and accurate solution for high-
resolution remote sensing image analysis. 

 
Fig. 1. Diagram of the proposed HSANet model. 

  
2.2. Hybrid Self-Cross Attention Fusion Module (HSC-
AFM) 

As shown in Fig.2, HSC-AFM stands for Hybrid Self-
Cross Attention Fusion Module, which is the core module in 
HSANet. First, the input data is passed through a 
convolutional layer which uses filters (kernels) to extract 
features. The convolution operation can be expressed as 
follows. 

𝐹! = 𝐹 ∗𝑊 + 𝑏                            (1) 
Where 𝐹  is the input feature map, 𝑊  is the convolution 
kernel, 𝑏  is the bias term, ∗  represents the convolution 
operation, and 𝐹! is the output feature map. After the 
convolutional layers, a Softmax layer is used to assign 
weights to the features. The features are then passed through 
two linear layers that integrate the features and inform 
decisions for the change detection task. The operations of the 
linear layer can be expressed as follows. 

𝑌 = 𝑊"#$%&'𝑋 + 𝑏"#$%&'                     (2) 
Where 𝑋 is the input feature, 𝑊"#$%&'  is the weight matrix, 
𝑏"#$%&' is the bias term, and	𝑌 is the output feature. Between 
the two linear layers, there is a skip connection, which allows 
the network to pass information directly from the 
convolutional layer to the later layers. This structure 
facilitates the propagation of gradients and reduces the 
problem of vanishing gradients. After the skip connection, 
there is an addition operation, which adds the output of the 
convolutional layer to the output of the linear layer, which 
helps the network to learn a richer feature representation. On 
the right side of the figure, there is a separate convolutional 
block, which may represent a more complex convolution 

operation for a specific feature extraction or processing task. 
The design of this module allows it to efficiently extract and 
process features in change detection tasks, capturing spatial 
features through convolutional layers, integrating features 
through linear layers, and enhancing the expressiveness of 
features through skip connections and addition operations. 
This structure helps to improve the accuracy and robustness 
of change detection. 
2.3. Loss Function 

Our loss function is the dice loss function, which is 
calculated as follows.  

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 − (∑ *!*+!
"
!#$

∑ *!"
!#$ ,∑ *+!"

!#$
                   (3) 

where 𝑦#  and 𝑦4#  denote the ground truth label and the 
predicted value for pixel 𝑖. 𝑁 represents the total number of 
pixels, calculated as the product of the number of pixels per 
image and the batch size. 

 
Fig. 2. Diagram of the proposed HSC-AFM.  

3. EXPERIMENTAL SETUP 



3.1. Datasets 
We evaluate our proposed model on two publicly available 

change detection (CD) datasets: WHU-CD  [19] and LEVIR-
CD [9]. For the WHU-CD dataset, we divided it into non-
overlapping patches of size 256 × 256, resulting in 4536, 504, 
and 2760 patch pairs for training, validation, and testing, 
respectively. Similarly, the LEVIR-CD dataset was 
partitioned into non-overlapping patches of the same size, 
producing training, validation, and testing sets containing 
7120, 1024, and 2048 samples, respectively. 
3.2. Implementation Details 

Our models are implemented using PyTorch and trained on 
a single NVIDIA RTX 3090 GPU. We utilize the AdamW 
optimizer with a weight decay of 0.0025 and an initial 
learning rate of 5e-4 to optimize the loss function. The batch 
size is set to 8, and the training process spans 50 epochs. 
3.3. Performance Metrics 

To facilitate a more intuitive comparison, we evaluate the 
performance of our model against SOTA methods using 
metrics such as F1-score (F1), Precision (Pre.), Recall (Rec.), 
Overall Accuracy (OA), and Intersection over Union (IoU). 
These metrics are derived by comparing the ground truth with 
the predicted maps. 

4. RESULTS AND DISCUSSION 
In this section, we evaluate the change detection (CD) 

performance of our HSANet by comparing it with several 
state-of-the-art methods: the stacked convolutional layers 
methods (FC-EF [7], FC-Siam-conc [7], and FC-Siam-diff 
[7]), attention mechanisms methods( STANet [9], SNUNet 
[11], MSPSNet [13] and HANet [14] ) and the transformers-
based methods( BIT [15], Change Former [16], and RSP-BIT 
[17]) . 
 

TABLE I  QUANTITATIVE COMPARISON. 

Model   LEVIR-CD   WHU-CD 
F1  Pre. Rec. OA IoU F1  Pre. Rec. OA IoU 

FC-EF [7] 61.52 73.31 53.00 - 44.43 58.05 76.49 46.77 - 40.89 
FC-Siam-conc [7] 64.41 95.30 48.65 - 47.51 63.99 72.06 57.55 - 47.05 
FC-Siam-diff [7] 89.00 91.76 86.40 - 80.18 86.31 89.63 83.22 - 75.91 

STANet-PAM [9] 85.20  80.80  90.10  98.40  74.22 82.00  75.70  89.30  98.60  69.44 
SNUNet [11] 89.97  91.31  88.67  98.99  81.77  87.76  87.84  87.68  99.13  78.19 

MSPSNet [13] 89.67  90.7 5  88.61  98.96  81.27  86.49 87.84 85.17 99.05 76.19 
HANet [14] 90.28 91.21 89.36 99.02 82.27 88.16  88.30  88.01  99.16 78.82 

BIT [15] 89.94  90.33  89.56  98.98  81.72  80.97  74.01  89.37  98.51  68.02  
Change Former [16] 90.20  92.05  88.37  99.01 82.21 87.18  92.70  82.28  99.14  77.27  

RSP-BIT [17] 89.71  92.00  87.53  98.98  81.34  78.50  69.93  89.45  98.26  64.60  
HSANet (Ours) 91.96  93.27 90.68  99.46  85.11  92.06  94.02  90.18  99.45  85.29  

* ALL VALUES ARE IN %. FOR CONVENIENCE: BEST, 2ND-BEST, AND 3RD-BEST. 

 
Fig. 3. Visual qualitative comparison. For clarity: TP (true positive, shown in white), FP (false positive, shown in red), TN 
(true negative, shown in black), and FN (false negative, shown in blue). 
 

As shown in Tab. I, the HSANet model exhibits excellent 
performance. On the LEVIR-CD dataset, the F1 score of 
HSANet reaches 91.96, precision is 93.27, recall is 90.68, 
Overall Precision (OA) is as high as 99.46, and Intersection 
Over Union (IoU) is 85.11, all of which rank first among the 
compared models. These results demonstrate that HSANet 
has significant advantages in accuracy, recall rate, and overall 

classification performance in change detection. In particular, 
HSANet excels in terms of precision and IoU, meaning it can 
identify change regions with high accuracy, and the 
recognition overlaps with the actual change regions are very 
high. On the WHU-CD dataset, HSANet also performs well, 
with an F1 score of 92.06, precision of 94.02, recall of 90.18, 
OA of 99.45, and IoU of 85.29. These results further confirm 

T1 T2 GT RSP-BITMSPSNetSNUNet BITSTANet ChangeFormerFC-EF FC-Siam-concFC-Siam-diff HANet HSANet

LE
V
IR
-C
D

W
H
U
-C
D



HSANet’s leading position in the change detection task. The 
high accuracy and IoU values are especially noteworthy, as 
they not only reflect the model's precision in identifying 
changed regions but also demonstrate the high alignment 
between its predictions and the actual changed regions. 
Considering the performance on both datasets, the advantages 
of HSANet in the field of change detection are evident. Its 
superior performance across key metrics not only proves the 
effectiveness and reliability of HSANet for change detection 
tasks but also supports its potential for practical applications. 
These strengths make HSANet a strong candidate for both 
change detection research and real-world applications. 

As shown in Fig. 3, the HSANet model performs 
particularly well in change detection. On the LEVIR-CD 
dataset, HSANet accurately identifies the changed regions 
(white regions) while maintaining low false positive (red 
regions) and false negative (blue regions) examples. On the 
WHU-CD dataset, HSANet also shows high accuracy, with 
detection results closely matching the true changes (GT), and 
it has the fewest false positive and false negative cases among 
all models. This indicates that HSANet has a significant 
advantage in reducing false positives and false negatives. 
Compared with other models, such as FC-EF, FC-Siam-conc, 
FC-Siam-diff, STANet, SNUNet, MSPSNet, HANet, BIT, 
ChangeFormer, RSP-BIT, and others, HSANet demonstrates 
clear advantages in both accuracy and robustness in change 
detection. This further confirms HSANet's high performance 
in quantitative comparisons; on both the LEVIR-CD and 
WHU-CD datasets, HSANet achieves the highest scores in 
key indicators, such as F1 score, precision, recall, overall 
accuracy, and intersection-over-union ratio. These visual 
results are consistent with the previous quantitative analysis 
and further highlight the superiority of HSANet in change 
detection. 

5. CONCLUSION 
In this paper, we introduce HSANet, a network that 

employs hierarchical convolution to extract multi-scale 
features. By integrating hybrid self-attention and cross-
attention mechanisms, it learns and merges global and cross-
scale information. This approach enables HSANet to capture 
global context at multiple scales and effectively integrate 
cross-scale features, thereby refining edge details and 
enhancing detection performance. 
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